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DEFINITION 7.1. L’espace vectoriel (Kd/)d s’appelle lespace des matrices de dimension d' x d a
coefficients dans K et est note

My xa(K) = {(mij)icar j<d> mij € K}.

Un element de My wq4(K) est appelle matrice de dimensions d' x d ou juste une matrice d’ X d.

. 5/77111 mig - mld\
L Moq Mmoo - mMaod
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DEFINITION 7.2. Soient B C V, $' C W des bases comme ci-dessous et By C Hom(V, W)
la base de Hom(V, W) associee. L’application reciproque CLgi/ , sera egalement notee

maty 5 : HOm(V, W) — Mdrxd(K).

Ezxplicitement, si on la la decomposition ¢ = > mij(@)Eij alors on a

1<d’,j<d
mii mi2 - mid
ma1  Mm22 - 24
mat,@/,e@(@) = (mz‘j(@))z‘éd’,j@ -
mqr1 Mgr2 -+ Mgrq

La matrice matg 4(p) est appellee matrice associee a ¢ dans les bases B,%'. Rappelons que pour
tout 1 < j < d, (m; j(¢))icar est Uensemble des coordonnees de l'image p(e;) de e; € % dans la
base A’ : ie.

ples) = Y mij(p)fi.

1<i<d’
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DEFINITION 7.3. Soient B CV, ' C W des bases. Soit
v=x1.€e1+---+x0€0€V
un vecteur decompose dans la base . Alors la matrices

X1

I2
Colgz(v) = e Ligy(v) = (z1 -+ za)

Ld

sont appellees respectivement

— la matrice colonne associee a v dans la base A,
— La matrice ligne associee a v dans la base A,

Ces applications sont des isomorphisme entre V' et Coly(K) et Lig,(K).
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DEFINITION 7.5. Soient d,d',d" > 1 et M € Myryq(K), N € My xq(K), on defini le produit
des matrices M et N comme etant la matrice

L:=M.N € Md”xd(K)

avec

L = (lik)igd”,kgd - Mdlfxd(K) et lzk = Zmij.njk.

Soient d,d’,d” > 1, on a donc defini une application ”produit de matrices”

Mgrsqr(K) x My xq(K) = Mgryq(K)
(M, N) — L=MN"
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N : d' lignes d colonnes
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M: d” lignes d’ colonnes

Nia
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Nd'd

ld"] e ld”k e ld”d

L=MxN: d" lignes d colonnes
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PROPOSITION 7.1. Soit Z C V, 8" C W des bases, v € V un vecteur de coordonnees (x;)j<d
dans la base B (ie. v=1x1.€1+ -+ x4.€q) €t (y;)i<a les coordonnees de o(v) dans la base A" (ie.
o) =wy1.f1 + - +yafor). On associe a v et p(v) leurs matrices colonnes (de hauteurs d et d' =

T2 :

Colgz(v) = E Colg (p(v)) =
& v

Colg (p(v)) = matg z(p).Colg(v).

Autrement dit si matgg/,e%:»(go) - (mz’j)igd',jgd; on a

(yl\ (mll mig - mld\
Y2 Mol M2 -+ Mag |

alors on a la relation

L2

Ld

\yd’) \mdfl mqr2 - md’d)



Cranfle: Qg (oo, )
V= ('/‘/0 @ (\/\/])’21.6/ Lr)
A




‘xw«&. V. 'RD(]&%

cP-V-»\/ Phl—> XPh- Pex)
ﬂD( KXol )2 K, 2 = (X3%a)

__XL 3+ X-|
Bb.34 X X
()= -1 <p D)= =X (X%






?YOANJC de ma,)fviow Jxm\'a%w
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PROPOSITION 7.2. soit ¢ : V ~ W un isomorphisme lineaire et o= : W+ V la reciproque. On
a les relations

mat@,@/(gp_l).mat%/,@(go) = Idy,
mat g z(p)matg gz (¢ 1) = Idg.
En particulier st V=W et o = 1Idy est l'identite on a

(7.2.3) mat@r,@(ldv).mat@,%/ (Idv) = Idy.

. ) 2
S\ M= mb;)"s,b(lﬁz H = m'jBB, (ﬁ >
Jos NAM-M.M_T)

H ot V\] ol 1IVeLE Q)\uw, de
Vasbre du V(0.
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THEOREME 7.1 (Proprietes fonctionelles du produit de matrices). Soient d,d’,d” > 1 et Mg« q (K),
My wa(K), Mgr«q(K) les espaces de matrices correspondants.
L’application "produit de matrices”

Marxa (K) X Marxa(K) +  Marxa(K)
(M, N) —  M.N

a les proprietes sutvantes

(1) Distributive a gauche: pour N € K, M,M' € Mgrxqa (K), N € Mg xq(K),
(AM+ M').N =XM.N+ M'.N.

(2) Distributive a droite: pour N € K, M € Mgryxqa(K), N,N' € Mg xqa(K),
M.(AN+N")=XMN+ M.N'.

(3) Neutralite de lidentite: pour M € Mg xq (K),

Idg».M =M, MIdgy =M

(4) La matrice nulle est absorbante: pour M € Mgy q (K),
Ogrrr g -M = 0ginrgr;, M.Ogrg = 0grg-

(5) Associativite: Soit d"' > 1 et L € Magnwar(K), M € Mgrxq (K), N € Mg xqa(K) alors
(L.M).N = L.(M.N) € Mynya(K)

Pwule,




THEOREME 7.2. Soit U,V,W des espaces vectoriels de dimensions d,d’,d" et B, B, PB" des
bases. Soient des applications lineaires

o: U=V Y: V=W
On note les coefficients des matrices de @, et 1) o @ dans les bases adequates par

mat g z(¢) = (k) jk,  matgr g (Y) = (Mij)i;

mat g (Y o ¢) = (Lir)ix
alors on a
(7.2.2) matz,% (Y o ) = matgr g (1) mate z(p)

Autrement dit on a

/ l11 l14 \ (mll mi2 -+ Mg \
log -+ log mo1 Mo - Moy niy -+ Nid
nzy -+ MN2d
. & . . : ng'1 -+ Ngd
\ld”l e Zd”d) \mdlll md//2 LR md//d/



THEOREME (Proprietes fonctionelles de la composition des applications lineaires). Soient U, V, W, Z
des espaces vectoriels de dimensions finies.
L’application ”composition”

"Hompg (V,W) x Homg (U,V) +— Homg (U, W)
' (¥, ) = pogp

[ NN ]

a les proprietes suivantes

(1) Distributive a gauche: pour A\ € K, 1,7 € Homg (V,W), ¢ € Homg (U, V),

A+ )op=AYpop+4 op.
(2) Distributive a droite: pour A\ € K, ¥ € Homg (V,W), ¢, ¢’ € Homg (U, V),

Yvo(Ap+¢)=Apop+oy.
(3) Neutralite de lidentite: pour v € Homp (V, W),
Idw oy =1, Y oldy = .
(4) L’application lineaire nulle est absorbante: soit Z un K-ev et
0, W—Z,0,:V—=Z 0p: V=W, 0y :U—=W, 0, :U—V
les applications constantes nulles; on a pour v € Homg (V, W),
0z 0% =0%, P00y =0y.
(5) Associativite: Soit 0 € Homg (W, Z), ¢ € Homg(V, W), ¢ € Homg (U, V) alors
(Bop)op =00 (yoy)eHomg(U,Z)



Rm\?{ o e matuce - Cf ) — W

7 (c@ = diwm Lm C?
— dim Vet (@Le,,) ()
ﬁc,,/,,,/q\)-.-;\m% L V.
o M. maij%(’fq) )
ST
u:m g

\




DEFINITION 7.6. Soit M € Mg «q(K), le rang d’une matrice M est la dimension de [’espace
engendre par les d colonnes de M dans Coly (K):

rg(M) = dim Vect({Col; (M), j < d}).

Autrement dit rg(M) est la taille maximale d’une sous-famille libre de la famille {Col;(M), j < d}
des colonnes de M.

G M= mw’rB,B((f) valﬂ):vglff)

- Twneaodle di
r%((e)‘{‘m"@ 8\[ o‘m\'\,)

M) < mm(a\ d)
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DEFINITION 7.7. La transposition est l'application des matrices d' x d vers les matrice d x d’
definie par
ty .  Maxa(K) - Max i (K)
M = (mij)igarjga = M= (m5)<ai<d’
avec
* /

My = Mgy, jLdyi<d.

Autrement dit si

M = (mij)icar j<d, M = (m3)icdica = (Mij)j<di<d

(mll mio - mld\ /mll Moy +++ -+ - md’l\
m21 Mm22 -+ MM2q Mio Mag -+ - Mg

\md’l mqgo - md’d} \mld mog *+° - md’d/






THEOREME (Matrice de application duale). Soit ¢ : V +— W une application lineaire; B et %'
des bases de V et V' et
matg z(p) = (Mij)igdar,j<d
la matrice de ¢ dans les bases X et B’ et soit
matg- g (¢*) = (Mj;)j<di<d
la matrice de ©* dans les bases B'* et B* alors on a

m;i:mij, iéd’, ]gd

En d’autres termes
matg: @+ (") = "matg z(p).



EXERCICE 6.6. Soit ¢ : V +— W une application lineaire entre deux espaces de dimensions finies.
(1) (Linearite) Montrer que ’application

o :p € Hom(V, W) — ¢* € Hom(W™*, V™)
qui a une application lineaire associe 1’application lineaire duale est elle meme lineaire:
(A +¢")" = A" + "
En d’autres termes
o ¢ Hom(Hom(V,W),Hom(W™* V*)).
(2) (Anti-morphisme) Soit ¢ : W +— Z. Montrer que
(Yop) = oy
(3) (Involutivite) Montrer que si le bi-dual V** est identifie (canoniquement) a V' via I'isomorphisme
evale ;v €V > ({ = 4(v)) e V**

alors la duale de la duale qu’une application est ’application elle-meme:

(¥")" = ¢



THEOREME 7.3. (Proprietes fonctionelles de la transposition) La transposition a les proprietes
sutvantes:

(1) Linearite: "(\.M + M') = N'M + M.
(2) Involutivite: "(*M) = M.
(3) Anti-multiplicativite: pour M € Mg 4(K), N € My q(K), M.N € Mg 4(K) et

"(M.N)="'N.!M.

/]

Exo- CQLM&»{'WV.‘& (L\ WMl W |
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THEOREME 7.4 (Invariance du rang par transposition). Soit M € My xq(K) on a
rg(M) = 1g("M).
Comme la transposee d'une matrice transforme les colonnes en lignes on obtient:

COROLLAIRE 7.1. La rang d’une matrice est egal a la dimension de lespace K¢ engendre par
les vecteurs lignes de M

rg(M) = dimg Vect(Lig;(M), j=1,---,d').

Prowe, . Soi TT wm}ﬁCF -
o ?‘ ?)aﬂ&’m}m e (F(;\A/’—ol/%
Gu o mc‘ fa(ﬂb‘ :rg(?)
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THEOREME 7.5. L’espace My(K) muni de l'addition des matrices et de la multiplication est un
anneau (non-commutatif en general) dont l’element neutre est la matrice carree nulle 0, = 04,4 et
dont l'unite est la matrice identite Idg. De plus la structure de K-EV de My(K) fait de l’anneau
(My(K),+,.) une K-algebre (de dimension d*).

On Uappelle ’algebre des matrices carres de dimension d (ou de rang d) sur le corps K (ou a
coefficient dans K ).
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THEOREME 7.6. Soit V' de dimension finie d et B une base de V', l'application
m '\j. - maty : End(V) —> Md(K)

est un isomorphisme d’anneauz (et donc de K-algebres) pour les lois d’addition et de multiplication
decrites precedemment.
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DEFINITION 7.8. Soit V un K-EV de dimension finie. Le groupe lineaire de V est le groupe
(pour la composition dans End(V)) des elements inversibles de l’algebre Endg (V); son element

neutre est [’identite Idy et on note ce groupe
GL(V)=Endg (V)" ={¢:V =V, ¢ est bijectif}.

Soit d > 1. Le groupe lineaire de rang d sur K est le groupe des matrices carrees inversibles
dans ’algebre My(K) pour la multiplication des matrices; son element neutre est la matrice identite

Idg et on note ce groupe
GLy(K) = Mg(K)* ={M € My(K), M’ € My(K), M.M' = M'.M =1d,}.

PROPOSITION 7.5. L’application matg : End(V') — My(K) induit un isomorphisme de groupes
matyg : GL(V) — GL4(K)

et en particulier
matz(p ) = matz(p) L.
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THEOREME 7.7 (Critere d’inversibilite des endomorphismes). Soit ¢ : V +— V alors les condi-
tions sutvantes son equivalentes:

(1) ¢ est inversible (ie. bijective),

(2) ¢ est injective,

(3) ¢ est surjective,

(4) ra(e) = d.

(5) @ transforme une base de V' en une famille libre,

(6) o transforme une base de V' en une famille generatrice



THEOREME 7.8 (Critere d’inversibilite pour les matrices (via les colonnes)). Soit une matrice
carree M = (myj)i j<a € Ma(K), les conditions suivantes sont equivalentes
(1) M est inversible, ie. M € GLg(V),
(2) xg(M) = d,
(3) {Col;(M), i =1,---d} forme une famille libre de Coly(K),
(4) {Col;(M), i =1,---d} forme une famille generatrice de Coly(K).

THEOREME 7.9 (Critere d’inversibilite pour les matrices (via les lignes)). Soit une matrice carree
M = (mij)ij<a € Ma(K), les conditions suivantes sont equivalentes

(1) M est inversible, ie. M € GLg4(V),

(2) "M est inversible, ie. "M € GLg(V),

(3) 1g("M) = d,

(4) {Lig;(M), i =1,---d} forme une famille libre de Lig,(K),

(5) {Lig;(M), i =1,---d} forme une famille generatrice de Lig,(K).
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THEOREME 7.10 (Formule de changement de base). Soient B,%, C V et #', B, C W des
bases de V et W. On a la relation

matg: 2, (p) = matg: g (Idw ).matz 2(p).matgz 4, (Idy ).
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DEFINITION 7.9. La matrice carree de taille d = dimV,

maty 4, = maty z, (Idv)

est appelle matrice de changement de base, de la base £ a la base B, ou encore la matrice de passage
de B a B,

Sa j-ieme colonne est formee par les coordonnees du j-ieme vecteur e,; exrprime comme combi-
naison lineaire dans la base #. La formule de changement de base se reecrit alors

matg: 2, (90) = mat,%v;wgg/.matgg/,@(gp).mat@,@n.



PROPOSITION 7.7. Soit trois bases B, B, Bo CV on a

(1) Formule d’inversion:
matg z, matg, z = 1dg.

En particulier une matrice de passage est inversible (dans My(K)) et son inverse est la
matrice de passage de la base initiale a la nouvelle base:

Inaté,,l%,1 = maty, %.
(2) Formule de transitivite:

maty », = maty g, maty, z,
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DEFINITION 7.10. Deux matrices M, N € My xq(K) sont dites equivalentes si il existe des
matrices inversibles A € GLy (K), B € GL4(K) telles que

N =AM.B.

Par la formule de changement de bases on a:

PROPOSITION 7.8. Deux matrices M, N € My «q(K) sont equivalentes ssi il existe V' de di-
mension d et W de dimension d', des bases B, B, CV et B', B, C W et une application lineaire
p: V=W telle que

M = mat@/@(gp), N = mat{@%@n (QO)
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THEOREME 7.11. Soient M, N € My «4(K). Les conditions suivantes sont equivalentes

(1) M et N sont equivalentes,
(2) 18(M) = 18(N),

(8) M et N sont equivalentes a Ly «q(T).
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DEFINITION 7.11. On dit que deuxr matrices M, N sont semblables ou conjuguees si il existe
C € GL4(K) tel que
N =CM.C™.

La relation "etre semblables” ou ”etre conjuguees” est une relation d’equivalence.
Une classe d’equivalence pour cette relation, [’ensemble des matrices de la forme

M*:= Ad(GLy(K))(M) = {C.M.C™!, C € GLg(K)}
est appellee classe de conjugaison (de M ) et on note
Ma(K)* = {M"} = Ma(K)/ ~

[’ensemble des classes de conjugaison.
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PROPOSITION 7.9. Deux matrices M, N € GL4(K) sont semblables ssi M et N sont les matrices
d’un meme endomorphisme dans des bases convenables: il existe un espace vectoriel de dimension
d, V, deux bases B, B, CV et une application lineaire o : V +— V telle que

M = matz(¢), N =matg (¢).
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DEFINITION 7.12. Soit C € GL4(K) une matrice inversible. Note note Ad(C) l'application dite
de conjugaison par C':
— C.M.C™1

e i Wond ce
M mat ?

Ad(C) :




PROPOSITION 7.10. La conjugaison Ad(C') est un automorphisme de l’algebre My(K):

(1) Linearite: On a Ad(C)(A.M + N) = AAd(C)(M) + Ad(C)(N).
(2) Multiplicativite: Ad(C)(M.N) = Ad(C)(M).Ad(C)(N).
(3) Inversibilite: Ad(C) est bijective et Ad(C)~! = Ad(C™1).
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PROPOSITION 7.11. On dispose donc d’une application
Ad(e) : C' € GLy4(K) — Ad(C) € Aut(My(K)) ~ GLg2(K)

appellee application adjointe.
L’application adjointe Ad(e) est un morphisme de groupes et definit donc une action a gauche
GL4(K) ~ My(K). Son noyau est forme par les matrices scalaires:

ker Ad = K*1d.

Preuve J




